
Formalizing mathematics with cubical type theory

Michael Zhang

October 19, 2024



Intro

▶ Why formalize proofs?
▶ What can we formalize?
▶ What are some existing theorem provers?

▶ Rocq (Coq), Lean, Agda



Demo



Set theory

▶ Math is built upon sets
▶ We often operate at a much higher level
▶ Skip the details
▶ We can’t do this for mechanized systems!



Introducing the type



Proofs are programs

Logic side Programming side
formula type
proof term

formula is true type has an element
formula is false type does not have an element

logical constant ⊤ (truth) unit type
logical constant ⊥ (falsehood) empty type

implication function type
conjunction product type
disjunction sum type

universal quantification dependent product type
existential quantification dependent sum type



Important features of Martin-Löf type theory

▶ Stratified universes: Type0,Type1,Type2, . . .

▶ Inductive types, defined by type former, constructors,
eliminators, and computation rules



Important features of Martin-Löf type theory

▶ For example, N is defined with 2 possible constructors: zero
and suc.

Γ ⊢ zero : N
Γ ⊢ n : N

Γ ⊢ suc(n) : N
▶ Elimination rule for N:

Γ ⊢ cz : C Γ, (x : N), (y : C ) ⊢ (cs : C ) Γ ⊢ n : N
Γ ⊢ indN(cz , x .y .cs , n) : C



Important features of Martin-Löf type theory

▶ Dependent sums, or Σ-types

isEven : N → Type Even :
∑
n:N

isEven(n)



Important features of Martin-Löf type theory

▶ Dependent functions, or Π-types

List : Type → Type
Vec : Type → N → Type

append :
∏

A:Type

 ∏
m,n:N

(Vec(A,m) → Vec(A, n) → Vec(A,m + n))





Important features of Martin-Löf type theory

▶ The identity type, IdA(x , y), for some x , y : A

▶ Also written as x ≡A y , or just x ≡ y if A is obvious
▶ Single constructor: reflx : IdA(x , x)



Important features of Martin-Löf type theory

▶ There can be multiple paths between points!



Homotopy type theory

▶ A homotopy, from algebraic topology, is a way to continuously
deform one path into another (A× [0, 1] → B)

▶ In type theory, we consider two functions f , g : A → B as
being homotopic if we can inhabit h : (x : A) → f (x) ≡ g(x)



Homotopy type theory



Isomorphism

▶ A function f : A → B

▶ A function g : B → A

▶
∏

(a:A) g(f (a)) ≡ a

▶
∏

(b:B) f (g(b)) ≡ b



Univalence

▶ Equivalences are identities



Univalence

▶ Equivalences are identities

(A ≃ B) ≃ (A ≡ B)

▶ Intuitively, if you wanted to use a B where you wanted to use
an A, just convert it and then convert it back later

▶ Importantly, there can be multiple inhabitants of A ≡ B
▶ Booleans!

ua(id) and ua(not) are different elements of Bool ≡ Bool

▶ Transport allows you to use A and B interchangeably

transport : (P : (X : Type) → Type) → (p : x ≡X y) → P(x) → P(y)



Univalence axiom?

▶ Unfortunately, univalence does not compute in Book HoTT
▶ Assume the functions we want as axioms

ua : (A ≃ B) → (A ≡ B)



Higher inductive types
▶ Normally inductive types give us ways to construct points
▶ Higher inductive types give us ways to construct paths



Circle (S1)

▶ base : S1, some arbitrary base point
▶ loop : base ≡ base, a path representing the rest of the circle



The fundamental group π1

▶ One central idea of algebraic topology: identify which spaces
are different from each other (i.e donuts and coffee mugs are
different from a solid sphere)

▶ The fundamental group is one metric of identifying spaces
▶ The fundamental group measures the "loop space"



The fundamental group of the circle

▶ The circle (S1) is an example of a simple but non-trivial space
because of the loop

▶ Determining fundamental groups of n-spheres is a difficult
problem in algebraic topology

▶ Fortunately, π1(S
1) has a known solution



The fundamental group of the circle

▶ Fundamental group asks us about the loops in the circle space
▶ base ≡ base because we don’t care about choice of base point
▶ Some example elements:

▶ ...
▶ loop−1 · loop−1

▶ loop−1

▶ refl
▶ loop
▶ loop · loop
▶ ...

▶ The fundamental group of the circle space is the integers

π1(S
1) ≃ Z



The fundamental group of the circle, core idea

▶ Use a winding helix to represent both!



The fundamental group of the circle, core idea

▶ Problem: we want multiple loopings to map us to different
integers.

▶ Idea: define a custom
type family that takes
different number of loops
to different "rotations"
of the integers!

▶ Define the encoding:
▶ code : S1 → Type
▶ code(base) = Z
▶ code(loop) = ua(suc)



The fundamental group of the circle, core idea

▶ Need to define the following data to prove the equivalence:

(base ≡S1 c) ≃ code(c)

▶ For some (c : S1) and (n : N) that encodes how many
loopings a path to c could take
▶ f : (base ≡S1 c) → code(c)
▶ g : code(c) → (base ≡S1 c)
▶ (g ◦ f )(p) ≡ idbase≡S1 c

▶ (f ◦ g)(n) ≡ idZ



Homotopy type theory proof idea

▶ For f : (base ≡S1 c) → code(c), just use the winding map!
▶ This allows us to turn any loop into an integer
▶ For some p : base ≡ base, transportcode(p, 0) turns 0 into any

integer by mapping over the equivalence between integers



Homotopy type theory proof idea

▶ For g : code(c) → base ≡S1 c , we can iteratively compose
loops to refl using a function loopn

▶ loop−1+n = loopn · loop−1

▶ loop0 = refl
▶ loopn+1 = loopn · loop

▶ Then, use this to define g
▶ g(c : code(base)) = loopc

▶ g(c : code(loop)) : (loopc ≡λx 7→code(x)→base≡x
loop loopc)

▶ This can be defined in two ways



Homotopy type theory proof

▶ The homotopies (g ◦ f ≡ id(base≡S1c)) and (f ◦ g ≡ idcode(c))

can be proven just by applying path induction and these
groupoid laws of paths:
▶ Identity: (p : x ≡A y) → p · refl ≡ p
▶ Identity: (p : x ≡A y) → refl · p ≡ p
▶ Inverse: (p : x ≡A y) → p · p−1 ≡ refl
▶ Inverse: (p : x ≡A y) → p−1 · p ≡ refl
▶ Associativity: (p : x ≡A y) → (q : y ≡A z) → (r : z ≡A w)

→ (p · q) · r ≡ p · (q · r)



Cubical type theory

▶ Make paths based on the interval type I which represents [0, 1]
▶ The interval is a primitive construct!



Cubical type theory

▶ Construct squares and cubes to create paths by composition
and filling

▶ Consequences
▶ Transport is a primitive notion
▶ Makes the univalence "axiom" definable



Composition



Defining g with cubes



Current work

▶ Re-formalizing results from HoTT book chapters 7 on n-types
and 8 on homotopy theory

▶ Re-formalizing results from Floris van Doorn’s dissertation on
spectral sequences



Conclusion and references

▶ Code: https://git.mzhang.io/michael/type-theory

[1] The Univalent Foundations Program. Homotopy Type Theory:
Univalent Foundations of Mathematics. Institute for Advanced
Study: https://homotopytypetheory.org/book, 2013.

[2] Cyril Cohen et al. “Cubical Type Theory: a constructive
interpretation of the univalence axiom”. In: arXiv:1611.02108
(Nov. 2016). arXiv:1611.02108 [cs, math]. DOI:
10.48550/arXiv.1611.02108. URL:
http://arxiv.org/abs/1611.02108.

https://git.mzhang.io/michael/type-theory
https://homotopytypetheory.org/book
https://doi.org/10.48550/arXiv.1611.02108
http://arxiv.org/abs/1611.02108

