{-
This file contains:
- Definitions equivalences
- Glue types
-}
{-# OPTIONS --safe #-}
module Cubical.Core.Glue where
open import Cubical.Core.Primitives
open import Agda.Builtin.Cubical.Glue public
using ( isEquiv -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ ⊔ ℓ')
; equiv-proof -- ∀ (y : B) → isContr (fiber f y)
; _≃_ -- ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ ⊔ ℓ')
; equivFun -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → A → B
; equivProof -- ∀ {ℓ ℓ'} (T : Type ℓ) (A : Type ℓ') (w : T ≃ A) (a : A) φ →
-- Partial φ (fiber (equivFun w) a) → fiber (equivFun w) a
; primGlue -- ∀ {ℓ ℓ'} (A : Type ℓ) {φ : I} (T : Partial φ (Type ℓ'))
-- → (e : PartialP φ (λ o → T o ≃ A)) → Type ℓ'
; prim^unglue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')}
-- → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A
-- The ∀ operation on I. This is commented out as it is not currently used for anything
-- ; primFaceForall -- (I → I) → I
)
renaming ( prim^glue to glue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')}
-- → {e : PartialP φ (λ o → T o ≃ A)}
-- → PartialP φ T → A → primGlue A T e
)
private
variable
ℓ ℓ' : Level
-- Uncurry Glue to make it more pleasant to use
Glue : (A : Type ℓ) {φ : I}
→ (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A))
→ Type ℓ'
Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd)
-- Make the φ argument of prim^unglue explicit
unglue : {A : Type ℓ} (φ : I) {T : Partial φ (Type ℓ')}
{e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A
unglue φ = prim^unglue {φ = φ}
-- People unfamiliar with [Glue], [glue] and [uglue] can find the types below more
-- informative as they demonstrate the computational behavior.
--
-- Full inference rules can be found in Section 6 of CCHM:
-- https://arxiv.org/pdf/1611.02108.pdf
-- Cubical Type Theory: a constructive interpretation of the univalence axiom
-- Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg
private
module GluePrims (A : Type ℓ) {φ : I} (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A)) where
T : Partial φ (Type ℓ')
T φ1 = Te φ1 .fst
e : PartialP φ (λ φ → T φ ≃ A)
e φ1 = Te φ1 .snd
-- Glue can be seen as a subtype of Type that, at φ, is definitionally equal to the left type
-- of the given equivalences.
Glue-S : Type ℓ' [ φ ↦ T ]
Glue-S = inS (Glue A Te)
-- Which means partial elements of T are partial elements of Glue
coeT→G :
∀ (t : PartialP φ T)
→ Partial φ (Glue A Te)
coeT→G t (φ = i1) = t 1=1
-- ... and elements of Glue can be seen as partial elements of T
coeG→T :
∀ (g : Glue A Te)
→ PartialP φ T
coeG→T g (φ = i1) = g
-- What about elements that are applied to the equivalences?
trans-e :
∀ (t : PartialP φ T)
→ Partial φ A
trans-e t ϕ1 = equivFun (e ϕ1) (t ϕ1)
-- glue gives a partial element of Glue given an element of A. Note that it "undoes"
-- the application of the equivalences!
glue-S :
∀ (t : PartialP φ T)
→ A [ φ ↦ trans-e t ]
→ Glue A Te [ φ ↦ coeT→G t ]
glue-S t s = inS (glue t (outS s))
-- typechecking glue enforces this, e.g. you can not simply write
-- glue-bad : (t : PartialP φ T) → A → Glue A Te
-- glue-bad t s = glue t s
-- unglue does the inverse:
unglue-S :
∀ (b : Glue A Te)
→ A [ φ ↦ trans-e (coeG→T b) ]
unglue-S b = inS (unglue φ b)
module GlueTransp (A : I → Type ℓ) (Te : (i : I) → Partial (i ∨ ~ i) (Σ[ T ∈ Type ℓ' ] T ≃ A i)) where
A0 A1 : Type ℓ
A0 = A i0
A1 = A i1
T : (i : I) → Partial (i ∨ ~ i) (Type ℓ')
T i φ = Te i φ .fst
e : (i : I) → PartialP (i ∨ ~ i) (λ φ → T i φ ≃ A i)
e i φ = Te i φ .snd
T0 T1 : Type ℓ'
T0 = T i0 1=1
T1 = T i1 1=1
e0 : T0 ≃ A0
e0 = e i0 1=1
e1 : T1 ≃ A1
e1 = e i1 1=1
transportA : A0 → A1
transportA = transp (λ i → A i) i0
-- copied over from Foundations/Equiv for readability, can't directly import due to cyclic dependency
invEq : ∀ {X : Type ℓ'} {ℓ''} {Y : Type ℓ''} (w : X ≃ Y) → Y → X
invEq w y = w .snd .equiv-proof y .fst .fst
-- transport in Glue reduces to transport in A + the application of the equivalences in forward and backward
-- direction.
transp-S : (t0 : T0) → T1 [ i1 ↦ (λ _ → invEq e1 (transportA (equivFun e0 t0))) ]
transp-S t0 = inS (transp (λ i → Glue (A i) (Te i)) i0 t0)