{-# OPTIONS --safe #-}
module Cubical.HITs.Susp.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Pointed
open import Cubical.Data.Unit
open import Cubical.Data.Bool
open import Cubical.Data.Empty
open import Cubical.HITs.S1
open import Cubical.HITs.S2.Base
open import Cubical.HITs.S3
open Iso
private
variable
ℓ ℓ' : Level
data Susp (A : Type ℓ) : Type ℓ where
north : Susp A
south : Susp A
merid : (a : A) → north ≡ south
Susp∙ : (A : Type ℓ) → Pointed ℓ
Susp∙ A = Susp A , north
suspFun : {A : Type ℓ} {B : Type ℓ'} (f : A → B)
→ Susp A → Susp B
suspFun f north = north
suspFun f south = south
suspFun f (merid a i) = merid (f a) i
UnitIsoSuspUnit : Iso Unit (Susp Unit)
fun UnitIsoSuspUnit _ = north
inv UnitIsoSuspUnit _ = tt
rightInv UnitIsoSuspUnit north = refl
rightInv UnitIsoSuspUnit south = merid tt
rightInv UnitIsoSuspUnit (merid tt j) k = merid tt (j ∧ k)
leftInv UnitIsoSuspUnit _ = refl
Unit≃SuspUnit : Unit ≃ Susp Unit
Unit≃SuspUnit = isoToEquiv UnitIsoSuspUnit
BoolIsoSusp⊥ : Iso Bool (Susp ⊥)
fun BoolIsoSusp⊥ = λ {true → north; false → south}
inv BoolIsoSusp⊥ = λ {north → true; south → false}
rightInv BoolIsoSusp⊥ = λ {north → refl; south → refl}
leftInv BoolIsoSusp⊥ = λ {true → refl; false → refl}
Bool≃Susp⊥ : Bool ≃ Susp ⊥
Bool≃Susp⊥ = isoToEquiv BoolIsoSusp⊥
SuspBool : Type₀
SuspBool = Susp Bool
SuspBool→S¹ : SuspBool → S¹
SuspBool→S¹ north = base
SuspBool→S¹ south = base
SuspBool→S¹ (merid false i) = loop i
SuspBool→S¹ (merid true i) = base
S¹→SuspBool : S¹ → SuspBool
S¹→SuspBool base = north
S¹→SuspBool (loop i) = (merid false ∙ sym (merid true)) i
SuspBool→S¹→SuspBool : (x : SuspBool) → Path _ (S¹→SuspBool (SuspBool→S¹ x)) x
SuspBool→S¹→SuspBool north = refl
SuspBool→S¹→SuspBool south = merid true
SuspBool→S¹→SuspBool (merid false i) j = hcomp (λ k → (λ { (j = i1) → merid false i
; (i = i0) → north
; (i = i1) → merid true (j ∨ ~ k)}))
(merid false i)
SuspBool→S¹→SuspBool (merid true i) j = merid true (i ∧ j)
S¹→SuspBool→S¹ : (x : S¹) → SuspBool→S¹ (S¹→SuspBool x) ≡ x
S¹→SuspBool→S¹ base = refl
S¹→SuspBool→S¹ (loop i) j = hfill (λ k → λ { (i = i0) → base
; (i = i1) → base })
(inS (loop i)) (~ j)
S¹IsoSuspBool : Iso S¹ SuspBool
fun S¹IsoSuspBool = S¹→SuspBool
inv S¹IsoSuspBool = SuspBool→S¹
rightInv S¹IsoSuspBool = SuspBool→S¹→SuspBool
leftInv S¹IsoSuspBool = S¹→SuspBool→S¹
S¹≃SuspBool : S¹ ≃ SuspBool
S¹≃SuspBool = isoToEquiv S¹IsoSuspBool
S¹≡SuspBool : S¹ ≡ SuspBool
S¹≡SuspBool = ua S¹≃SuspBool
SuspS¹ : Type₀
SuspS¹ = Susp S¹
SuspS¹→S² : SuspS¹ → S²
SuspS¹→S² north = base
SuspS¹→S² south = base
SuspS¹→S² (merid base i) = base
SuspS¹→S² (merid (loop j) i) = surf i j
meridian-contraction : I → I → I → SuspS¹
meridian-contraction i j l = hfill (λ k → λ { (i = i0) → north
; (i = i1) → merid base (~ k)
; (j = i0) → merid base (~ k ∧ i)
; (j = i1) → merid base (~ k ∧ i) })
(inS (merid (loop j) i)) l
S²→SuspS¹ : S² → SuspS¹
S²→SuspS¹ base = north
S²→SuspS¹ (surf i j) = meridian-contraction i j i1
S²→SuspS¹→S² : ∀ x → SuspS¹→S² (S²→SuspS¹ x) ≡ x
S²→SuspS¹→S² base k = base
S²→SuspS¹→S² (surf i j) k = SuspS¹→S² (meridian-contraction i j (~ k))
SuspS¹→S²→SuspS¹ : ∀ x → S²→SuspS¹ (SuspS¹→S² x) ≡ x
SuspS¹→S²→SuspS¹ north k = north
SuspS¹→S²→SuspS¹ south k = merid base k
SuspS¹→S²→SuspS¹ (merid base j) k = merid base (k ∧ j)
SuspS¹→S²→SuspS¹ (merid (loop j) i) k = meridian-contraction i j (~ k)
S²IsoSuspS¹ : Iso S² SuspS¹
fun S²IsoSuspS¹ = S²→SuspS¹
inv S²IsoSuspS¹ = SuspS¹→S²
rightInv S²IsoSuspS¹ = SuspS¹→S²→SuspS¹
leftInv S²IsoSuspS¹ = S²→SuspS¹→S²
S²≃SuspS¹ : S² ≃ SuspS¹
S²≃SuspS¹ = isoToEquiv S²IsoSuspS¹
S²≡SuspS¹ : S² ≡ SuspS¹
S²≡SuspS¹ = ua S²≃SuspS¹
SuspS² : Type₀
SuspS² = Susp S²
SuspS²→S³ : SuspS² → S³
SuspS²→S³ north = base
SuspS²→S³ south = base
SuspS²→S³ (merid base i) = base
SuspS²→S³ (merid (surf j k) i) = surf i j k
meridian-contraction-2 : I → I → I → I → SuspS²
meridian-contraction-2 i j k l = hfill (λ m → λ { (i = i0) → north
; (i = i1) → merid base (~ m)
; (j = i0) → merid base (~ m ∧ i)
; (j = i1) → merid base (~ m ∧ i)
; (k = i0) → merid base (~ m ∧ i)
; (k = i1) → merid base (~ m ∧ i) })
(inS (merid (surf j k) i)) l
S³→SuspS² : S³ → SuspS²
S³→SuspS² base = north
S³→SuspS² (surf i j k) = meridian-contraction-2 i j k i1
S³→SuspS²→S³ : ∀ x → SuspS²→S³ (S³→SuspS² x) ≡ x
S³→SuspS²→S³ base l = base
S³→SuspS²→S³ (surf i j k) l = SuspS²→S³ (meridian-contraction-2 i j k (~ l))
SuspS²→S³→SuspS² : ∀ x → S³→SuspS² (SuspS²→S³ x) ≡ x
SuspS²→S³→SuspS² north l = north
SuspS²→S³→SuspS² south l = merid base l
SuspS²→S³→SuspS² (merid base j) l = merid base (l ∧ j)
SuspS²→S³→SuspS² (merid (surf j k) i) l = meridian-contraction-2 i j k (~ l)
S³IsoSuspS² : Iso S³ SuspS²
fun S³IsoSuspS² = S³→SuspS²
inv S³IsoSuspS² = SuspS²→S³
rightInv S³IsoSuspS² = SuspS²→S³→SuspS²
leftInv S³IsoSuspS² = S³→SuspS²→S³
S³≃SuspS² : S³ ≃ SuspS²
S³≃SuspS² = isoToEquiv S³IsoSuspS²
S³≡SuspS² : S³ ≡ SuspS²
S³≡SuspS² = ua S³≃SuspS²
IsoType→IsoSusp : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → Iso A B → Iso (Susp A) (Susp B)
fun (IsoType→IsoSusp is) north = north
fun (IsoType→IsoSusp is) south = south
fun (IsoType→IsoSusp is) (merid a i) = merid (fun is a) i
inv (IsoType→IsoSusp is) north = north
inv (IsoType→IsoSusp is) south = south
inv (IsoType→IsoSusp is) (merid a i) = merid (inv is a) i
rightInv (IsoType→IsoSusp is) north = refl
rightInv (IsoType→IsoSusp is) south = refl
rightInv (IsoType→IsoSusp is) (merid a i) j = merid (rightInv is a j) i
leftInv (IsoType→IsoSusp is) north = refl
leftInv (IsoType→IsoSusp is) south = refl
leftInv (IsoType→IsoSusp is) (merid a i) j = merid (leftInv is a j) i
IsoSuspS²SuspSuspS¹ : Iso (Susp S²) (Susp (Susp S¹))
IsoSuspS²SuspSuspS¹ = IsoType→IsoSusp S²IsoSuspS¹
IsoS³S3 : Iso S³ (Susp (Susp S¹))
IsoS³S3 = compIso S³IsoSuspS² IsoSuspS²SuspSuspS¹